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Abstract

A practical advanced analysis of semi-rigid space frame is developed. Herein, the nonlinear behavior of beam-
to-column connections is discussed, and practical modeling of these connections is introduced. The proposed analysis
can predict accurately the combined nonlinear effects of connection, geometry, and material on the behavior and
strength of semi-rigid frames. Kishi—-Chen power model is used to describe the nonlinear behavior of semi-rigid con-
nections. Stability functions are used to capture second-order effects associated with P-6 and P-4 effects. The column
research council tangent modulus and a parabolic function for gradual yielding are used to represent material non-
linearity. The load—displacements predicted by the proposed analysis compare well with those available experiments. A
case study has been performed for a four story semi-rigid frame. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Conventional analysis of steel frame structures is usually carried out under the assumption that the
beam-to-column connections are either fully rigid or ideally pinned. However, most connections used in
current practice are semi-rigid type whose behavior lies between these two extreme cases. In the AISC-
LRFD Specification (AISC, 1993), two types of constructions are designated: type fully restrained con-
struction; and type partially restrained construction. The LRFD Specification permits the evaluation of the
flexibility of connections by rational means when the flexibility of connections is accounted for in the
analysis and design of frames.

The semi-rigid connections influence the moment distribution in beams and columns as well as the drift
(P-4 effect) of the frame. One way to account for all these effects in semi-rigid frame design is through the
use of a direct second-order inelastic frame analysis known as “advanced analysis”. Advanced analysis
indicates a method that can sufficiently capture the limit state strength and stability of a structural system
and its individual members so that separate member capacity checks are not required. Since the power of
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personal computers and engineering workstations is rapidly increasing, it is feasible to employ advanced
analysis techniques directly in engineering design office.

During the past 20 years, research efforts have been devoted to the development and validation of several
advanced analysis methods. The advanced analysis methods may be classified into two categories: (1)
plastic-zone method; and (2) plastic hinge method. Whereas the plastic-zone solution is known as the
“exact solution”, but cannot be used for practical design purposes (Chen and Toma, 1994). This is because
the method is too intensive in computation and costly due to its complexity.

Advanced analyses for two-dimensional steel frame with rigid and semi-rigid connection were developed
by Lui and Chen (1986), Al-Mashary and Chen (1991), Kishi and Chen (1986, 1990), Liew (1992), Kim and
Chen (1996a,b), and Barsan and Chiorean (1999). Second-order inelastic analyses for the space steel frames
with rigid connections were developed by Orbison (1982), Prakash and Powell (1993), and Liew and Tang
(1998). Orbison’s method is an elastic—plastic hinge analysis without considering shear deformations. The
material nonlinearity is considered by the tangent modulus E; and the geometric nonlinearity is by a
geometric stiffness matrix. Orbison’s method, however, underestimates the yielding strength up to 7% in
stocky members subjected to axial force only. DRAIN-3DX developed by Prakash and Powell (1993) is a
modified version of plastic hinge methods. The material nonlinearity is considered by the stress—strain
relationship of the fibers in a section. The geometric nonlinearity caused by axial force is considered by the
use of the geometric stiffness matrix, but the nonlinearity caused by the interaction between the axial force
and the bending moment is not considered. This method overestimates the strength and stiffness of the
member subjected to significant axial force. Liew and Tang’s method is a refined plastic hinge analysis. The
effect of residual stresses is taken into account in conventional beam-column finite element modeling.
Nonlinear material behavior is taken into account by calibration of inelastic parameters describing the yield
and bounding surfaces. Liew and Tang’s method, however, underestimates the yielding strength up to 7% in
stocky member subjected to axial force only. The analysis for the space steel frames with semi-rigid con-
nections was developed by Shakourzadeh et al. (1999). The work proposed by Shakourzadeh et al. was on
modeling of connections in the analysis of thin-walled space frames.

We shall develop a practical advanced analysis using plastic-hinge concept for semi-rigid space frames.
This paper combines nonlinear behavior of framed members and that of semi-rigid connection. The
analysis is equivalent to the plastic-zone analysis in its accuracy but is much simpler than the plastic-zone
analysis. Lateral torsional buckling of members is assumed to be prevented by adequate lateral braces. Also
a compact W-section is assumed so that the section can develop full plastic moment capacity without local
buckling.

2. Behavior of semi-rigid frames

The important attributes that affect the behavior of semi-rigid steel frame structures may be grouped
into three categories: connection, geometric, and material nonlinearities. The connection nonlinearity in-
dicates the nonlinear moment-rotation relationship of semi-rigid connections. The geometric nonlinearity
includes second-order effects associated with the P-6 and P-4 effects and geometric imperfections. The
material nonlinearity includes gradual yielding associated with the influence of residual stresses on flexure
behavior.

2.1. Nonlinear behavior of connections
The forces transmitted through beam-column connections consist of axial force, shearing force, bending

moment, and torsion. The effect of axial force, shearing force, and torsion is negligible since their defor-
mations are small compared with the rotational deformation of connections. The deformation behavior of
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Fig. 1. Schematic moment-rotation curves of various semi-rigid connections.

a connection may be customarily described by moment-rotation relationship, and its typical behavior is
nonlinear. The schematic moment-rotation curves of commonly used semi-rigid connections are shown in
Fig. 1. It may be observed that a relatively flexible connection has a smaller ultimate moment capacity and
a larger rotation, and vice versa. Herein, Kishi-Chen power model shall be adopted to describe the mo-
ment-rotation relationship of semi-rigid connections (Kishi and Chen, 1990).

If the direction of incremental moment applied to a connection is reversed, the connection will unload
with the initial slope of the moment-rotation curve. This loading and unloading behaviors of connections
can be adequately accounted for by the use of tangent stiffness and initial stiffness, respectively (Chen and
Lui, 1991). Herein, these stiffnesses shall be obtained by simply differentiating Kishi-Chen power model
equation.

2.2. Geometric nonlinearity

The bending moments in a beam-column consist of two types: primary bending moment; and secondary
bending moment. Primary bending moments are caused by applied end moments and/or transverse loads
on members. Secondary bending moments are from axial compressive force acting through the lateral
displacements of a member. The secondary bending moments include the P-6 and P-4 moments. Herein,
stability functions are used for each member to capture these second-order effects in a direct manner.

2.3. Material nonlinearity

Residual stresses result in a gradual axial stiffness degradation. The fibers that have the highest com-
pressive residual stress will yield first under compressive force, followed by the fibers with a lower value of
compressive residual stress. Due to this spread of yielding or plasticity, the axial and bending stiffnesses of a
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column segment are degraded gradually along the length of a member. This stiffness degradation effect will
be accounted for later by the tangent modulus concept (Liew, 1992).

When a wide flange section is subjected to pure bending, the moment-curvature relationship of a section
has a smooth transition from elastic to fully plastic. This is because the section yields gradually from ex-
treme fibers which have higher stresses than interior fibers. The gradual yielding effect leads to the concept
of a hardening plastic hinge which may be represented simply by a parabolic stiffness reduction function of
a plastic hinge (Liew, 1992). This will be described later.

3. Practical connection modeling

The connection behavior is represented by its moment-rotation relationship. Extensive experimental
works on connections have been performed, and a large body of moment-rotation data has been collected
(Goverdhan, 1983; Nethercot, 1985; Kishi and Chen, 1986; Chen and Kishi, 1989). Using these abundant
database, researchers have developed several connection models including: linear; polynomial; B-spline;
power; and exponential models. Herein, the three-parameter power model proposed by Kishi and Chen
(1990) is adopted. The Kishi—-Chen power model contains three parameters: initial connection stiffness Ry;,
ultimate connection moment capacity M, and shape parameter n. The power model may be written as (Fig.
2):

0
m:m for >0, m>0 (1)
+n n

where m = M /M, 6 = 0, /6y, 8, = reference plastic rotation, M, /R;;, M, = ultimate moment capacity of the
connection, R;; = initial connection stiffness, and » = shape parameter. When the connection is loaded, the
connection tangent stiffness (Ry,) at an arbitrary rotation 6, can be derived by simply differentiating Eq. (1)
as:

dmM M,

R, = =
kt d|9r| 00(1 +0n)l+l/n

(2)

M
M=Ryi0r
Mu D=
n=2
n=4
n=l
_ RisO:
{1+(9r/eo)n}l/n
0 80= Mu/Ri e,

Fig. 2. Moment-rotation behavior of three-parameter model.
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When the connection is unloaded, the tangent stiffness is equal to the initial stiffness as:

dM M,
~d|o,] 0

It is observed that a small value of the power index n makes a smooth transition curve from the initial
stiffness Ry; to the ultimate moment M,. On the contrary, a large value of the index n makes the transition
more abruptly. In the extreme case, when # is infinity, the curve becomes a bilinear line consisting of the
initial stiffness R;; and the ultimate moment capacity M,,.

An important task for practical use of the power model is to determine the three parameters for a given
connection configuration. Herein, the practical procedures for determining the three parameters are pre-
sented for the following four types of connections with angels: single/double web-angle connections; and
top and seat angle with/without double web-angle connections.

The values of R;; and M, can be determined by a simple mechanical procedure with an assumed failure
mechanism (Kishi and Chen, 1990). For single/double web-angle connections shown in Fig. 3, the initial
connection stiffness and the ultimate moment capacity are given by:

Ry =Ry (3)

£ o.cosh(af)

R = Gga (af) cosh(afp) — sinh(afs) @
m, =2l g ()

where G = shear moduli, #, = thickness of web-angle, &« = 4.2962 when Poisson’s ratio is 0.3, f = g,/d,,
d, = height of web-angle, g; = distance from the fixed support line to free edge line as shown Fig. 3(a),
V., = minimum value of ¥}, ¥, = maximum value of V},, and ¥}, = plastic shear force per unit length.

For the top and seat angle connections shown in Fig. 4, the initial connection stiffness and the ultimate
moment capacity are given by:

3EI &
Ry=— 4 6
“T14(0.782/82) g (6)
M, = Mo, + M, + Vyds (7)

where EI = bending stiffness of angle’s leg adjacent to column face, g, = g, — (D/2) — (¢,/2), g = gage
distance from top angle’s heel to center of fastener holes in leg adjacent to column face, D = d, for rivet
fastener, D = W for bolt fastener, d, = the diameter of the fastener, W = the diameter of the nut, #, =
thickness of top angle, d; = distance between centers of horizontal legs of top and bottom angles
(=d+(4/2) + (t,/2)), t, = thickness of the bottom angle, d = total depth of the beam section, M, = plastic
moment capacity at point C, M, = plastic moment capacity at point H, of top angle, ¥, = shear force,
dy =d + (t;/2) + k, and k = distance from the top angle’s heel to the toe of the fillet.

For top and seat angle connections with double web-angles shown in Fig. 5, the initial connection
stiffness and the ultimate moment capacity are given by:

M 3ELd 6ELd>
Ri=4 = e TS e (8)
0, gi(g1+0.787)  gs(g5+0.781)

Mu = M()s + Mpt + V;atdZ + 21/['7ad4 (9)
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Fig. 3. Web-angle connection. (a) Moderate thick plate modeling and (b) mechanism at ultimate condition.

where EI,, EI, = bending stiffness of legs adjacent to column face of top angle and web-angle, g3 =
8 —W/2—1,/2, W = diameter of nut, #, = thickness of top angle, M,, = ultimate moment capacity of top
angle, V), = shearing force acting on plastic hinges, V,, = resulting plastic shear force, ds = (2 Vou +
VOa)da/S(Vp,, + V0a) + 1, +t,/2, V,, = shearing force at upper edge of web-angle, V;, = shearing force at
lower edge of web-angle, and /; = distance from bottom edge of web-angle to compression flange of beam.

As for the shape parameter n, the equations developed by Kishi et al. (1991) are implemented here. Using
a statistical technique for » values, empirical equations of n are determined as a linear function of log,, 0y
shown in Table 1.
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Fig. 4. Top and seat angle connection. (a) Deflected configuration at elastic condition and (b) mechanism at ultimate condition.

4. Practical advanced analysis
4.1. Geometric second-order effects

Stability functions are used to capture the second-order effects since they can account for the effect of the
axial force on the bending stiffness reduction of a member. The benefit of using stability functions is that it
enables only one or two elements to predict ‘accurately the second-order effect of each framed member
(Kim and Chen, 1996a.b).
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Fig. 5. Top and seat angle with web-angle connection. (a) Deflected configuration at elastic condition and (b) applied forces in ultimate
state of connection.

The force—displacement equation using stability functions may be written for three-dimensional beam-
column element as

k4 0 0 07( s
M, 0 SiZ2 S0 0 01foa,
Mg _ 10 2 552 0 0 0])0s (10)
M., 0 0 0 S §Z 0] 0x
M. 0 0 0 St sE oo | 0s
T 0 0 0 o o «fl¢
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Table 1
Empirical equations for shape parameter »n (Kishi and Chen, 1990)
Connection type N
Single web-angle connection 0.5201og;, 0y +2.291 for log,, 0y > —3.073

0.695 for log,, 0 < —3.073

Double web-angle connection 1.3221og,, 6y + 3.952 for log,, 6y > —2.582
0.573 for log), 0p < —2.582

Top and seat angle connection 2.0031og,, 6y + 6.070 for log,, Oy > —2.880
0.302 for log), 0y < —2.880

Top and seat angle connection with double web-angle 1.3981og,, 0y +4.631 for log,, 0y > —2.721
0.827 for log,, 0y < —2.721

where P, M,,, M5, M4, M5, and, T are axial force, end moments with respect to y and z axes and torsion
respectively. 0, 0,4, 0,5, 0.4, 0.5, and, ¢ are the axial displacement, the joint rotations, and the angle of twist.
S1, 82, S3, and Sy are the stability functions with respect to y and z axes, respectively.

The stability functions given by Eq. (10) may be written as

n,/p, sin(m, /p;) — w*p cos(m,/p,) f P
S 2 —2cos(n,/p,) — m,/p, sin(w,/p,) 1
"7\ ?p,cosh(m,/p;) — n./p, sinh(z,/p,) f P (11a)
2 —2cosh(n,/p;) + m,/p, sinh(,/p,)
n’p, — m,/p, sin(n,/p,)  Poo
2 —2cos(n,/p,) — m,/p, sin(m,/py,)
S, = . ) (11b)
n,/p, sinh(x, /p,) — n*p )
z VP o if P>0
2 —2cosh(n,/p,) + m,/p, sin(w,/p;)
ny/p:sin(ny/p;) — wpcos(ny/pr) o, <0
5. — 2 — 2cos(my/p,) — m\/p. sin(m,/p,) (11c)
7 ) n’pcosh(n\/p.) — n\/p. sinh(n,/p.) £ P> 0
i
2 — 2cosh(m,/p;) + m\/p, sinh(r,/p;)
n’p, — m\/p sin(m/p;) i P<0
2 —2cos(n,/p,) — my/p, sin(m,/p.)
S, = P- SV Pz (11d)
TE\/[TZSIHh(TC pz) — TP, if P>0
2 —2cosh(rn,/p.) + 7\/p. sin(n,/p,)

where p, = P/(n’El,/L*), p, = P/(n*EL/L?), and P is positive in tension.
4.2. Column research council tangent modulus model associated with residual stresses

The CRC tangent modulus concept is used to account for gradual yielding (due to residual stresses)
along the length of axially loaded members between plastic hinges. The elastic modulus £ (instead of
moment of inertia /) is reduced to account for the reduction of the elastic portion of the cross-section since
the reduction of the elastic modulus is easier to implement than a new moment of inertia for every different
section. From Chen and Lui (1991), the CRC E, is written as
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E,=1.0E for P<O0.5P, (12a)

P P
E, = 4PE<1 - P) for P> 0.5P, (12b)

y y

4.3. Parabolic function for gradual yielding due to flexure

The tangent modulus model is suitable for the member subjected to axial force, but not adequate for
cases of both axial force and bending moment. A gradual stiffness degradation model for a plastic hinge is
required to represent the partial plastification effects associated with bending. We shall introduce the
parabolic function to represent the transition from elastic to zero stiffness associated with a developing
hinge. When the parabolic function for a gradual yielding is active at both ends of an element, the slope-
deflection equation may be expressed as

P B4 0 0 0 0]( o
M, 0 ki ky 0 0 0] 0u
MyB _ 0 kliiy k./ﬁ/'y 0 0 0 HyB (13)
MzA 0 0 0 kiiz kijz 0 OZA
MzB 0 0 0 kijz k/'jz 0 GzB
T 0 0 0 0 0 9]¢
where
S? El,
kiyy = 1A <S1 - S_?(l - 773)) 2) (14a)
Ed,
kijy = nAnBSZ% (14b)
S2 ElI
b = (5= 2010 ) B (140
B s EL
b= ma (51 S0 m) ) & (144)
El
kijz = nanpSa 2 (14e)
S? E,L
kjj Zﬂs(sz—s—:(l—m)) 2 (14f)

The terms #, and 5y is a scalar parameter that allows for gradual inelastic stiffness reduction of the
element associated with plastification at end A and B. This term is equal to 1.0 when the element is elastic,
and zero when a plastic hinge is formed. The parameter # is assumed to vary according to the parabolic
function:

n=10 for «a<0.5 (15a)

n=4a(l —a) for a>0.5 (15b)

where o is a force-state parameter that measures the magnitude of axial force and bending moment at the
element end. The term (o) may be expressed by AISC-LRFD and Orbison, respectively:
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AISC-LRFD
Based AISC-LRFD bilinear interaction equation (Kanchanalai, 1977), the cross-section plastic strength
of the beam-column member may be expressed (Fig. 6)

a=L  8M 8M e P 2M 2 M (16a)
y My, 9 M, B 9M, 9 M,
oc;;}—kMyyp—kAAZ for PI’)V<§JZ\‘/I/[L+§AAZ; (16b)
Orbison
Orbison’s full plastification surface (Fig. 7) (Orbison, 1982) of cross-section is given by
o= 1.15p" + m_ 4 m} + 3.67p’m + 3.0p°m, + 4.65mim; (17)

where, p = P/P,, m. = M./M,, (strong axis), m, = M, /M, (weak axis).
4.4. Shear deformation
The stiffness coefficients should be modified to account for the effect of the additional flexural shear

deformation in a beam-column element. The flexural flexibility matrix can be obtained by inversing the
flexural stiffness matrix as

B los

Plastic Strength
(@=1.0)

Initial Yielding
(@=0.5)

Fig. 7. Full plastification surface of Orbison.
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kj‘

__ky
9MA . kiikj/‘*ké kiik/'/'*kiz,' MA (18)
Ouis ki kii Mg

Kitkjj—k; kiikjj—k,

where k;;, k;;, and k;; are the elements of stiffness matrix in a planar beam-column. 8,,, and 8, are the slope
of the neutral axis due to bending moment. The flexibility matrix corresponding to flexural shear defor-
mation may be written as

{ HSA } _ G/}SL GALL {MA } (19)
Oss it ciz| [ Ms

where G4, and L are shear rigidity and length of the beam-column, respectively. Total rotation at the A and
B is obtained by combining Egs. (18) and (19) as

oy =)+ i) (20)

The force—displacement equation including flexural shear deformation is obtained by inversing the flexi-
bility matrix as

kil‘kjj - k12] + kiiASGL —ki,'kjj + klz] + k,'ijGL

My - ki + kjj + Zkij +AGL ki + kj] + 2kij +4,GL Oa (21)
k,'l' + kjj + Zkij +ASGL kii + k]j + 2ki./- +ASGL
The force—displacement equation may be written for three-dimensional beam-column element as
P (40 0 0 0 07
]V[yA 0 Ciiy Cijy 0 0 0 HyA
Mp | _ |0 Cy Cy 0 0 0f) 0 (22)
My 0 0 0 Ci CljZ 0 0-4
M. zB 0 0 0 Cijz CJJZ 0 GZB
T Lo 0o 0 o o «]l¢
in which
2
Co = k,-,-ykjjy — kijy + kiiyAszGL (233)
: kiiy + kjjy + 2kijy +4:GL
o _ —kikyjy + I, + iy A GL (23b)
iy k[[y + kjjy + 2k[jy + ASZGL
co Kikyjy — ki, + kjjAs-GL (23¢)
P ki + ke + 2k + AGL
C“ _ k[izkjjz - klzjz + ki'zAsyGL (23(1)
iiz kiiz + k[/z + Zkijz + AsyGL
—kii-kj;- + ksz + ki-A GL (23e)
e

C. =
7 ki + kg + 2k + A GL
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Kicks — K2, + kA, GL

ijz

. 23f
T K 4 ke + 2k + Ay GL .

where 4, and 4, are the effective shear flexure shear areas with respect to y and z axes, respectively.
4.5. Effect of semi-rigid connection

The connection may be modeled as a rotational spring in the moment-rotation relationship represented
by Eq. (22). Fig. 8 shows a beam-column element with semi-rigid connections at both ends. If the effect of
connection flexibility is incorporated into the member stiffness, the incremental element force—displacement
relationship of Eq. (22) is modified as

P w0 00000
M,y 0 G, G, 0 0 0)f6,
Mg _ [0 ¢ ch o0 0 0] (24)
MzA 0 0 C:;z C:;Z 0 GZA
My | |0 0 0 Coc 0o
T o 0 o0 0 o Fll¢
where
CwCy _ S
o (c,-,y + T - ,r) (25a)
- Y
c
(ijy + I‘SL:Y;” o ﬁ)
ijy - Ry .
. _ Gy
. 2 (25¢)
CiizCjjz CI'Z/'Z
) (Ciiz t R %)
. * (25d)
RZ

2
C Ci iz C/jz Ci ijz
2 T Rzt R
Cr — ktZA ktZA (2 56)
Jjz T *
RZ
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C..
c.==E 25f
ijz R} ( )
R: = (1 +&) (1 + S ) __ S (25g)
' Riuva Ryvp RiyaRisvp
R* . <l + Ciiz ) (1 + ijz ) . Clzjz (25h)
‘ Rz Riuzs RiuzaRuzs

in which Ry, = tangent stiffness of connections A in the Y-direction, Ryz = tangent stiffness of connec-
tions B in the Y-direction, Rz, = tangent stiffness of connections A in the Z-direction, and R;z3 = tangent
stiffness of connections B in the Z-direction.

5. Verification study

In the open literature, no available benchmark problems of semi-rigid space frames are available for
verification study. One way to verify the proposed analysis is to make separate verifications for the effects of
semi-rigid connections of a planar frame and for the nonlinear behavior of the column and the space rigid
frame.

5.1. Effect of semi-rigid connections of a planar frame

Stelmack (1982) studied the experimental response of two flexibly connected steel frames. A two-story,
one-bay frame among his study is selected as a benchmark frame in the present study. The benchmark
frame was fabricated from the same A36 W5 x 16 sections, and all column bases are pinned supports in
Fig. 9. The connections used in the frame were bolted top and seat angles connections of L4 x 4 x 1/2
made of A36 with bolt fasteners of A325 3/4-in. D, and its experimental moment-rotation relationship is
shown in Fig. 10. Gravity loading of 10.7 kN (2.4 kips) was first applied at third points of the beam of the
first floor, and then a lateral load was applied as the second loading sequence. The lateral load—displace-
ment relationship was provided by the experimental work.

H—»'O‘ '6‘ ‘

P =10.7 KN (2.4 kips)

1.7m
(66 inch)

I N S

1.7m
(66 inch)

2.7 m (108 inch) |
1

. .

Fig. 9. Configuration and load condition of Stelmack’s two-story semi-rigid frame.
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Fig. 10. Comparison of moment-rotation behavior by experiment and three-parameter power model for verification study.

Herein, the three parameters of the power model are determined by a curve-fitting and Egs. (4)-(9)
combined with Table 1. The curves by the experiment and by the curve-fitting result in a good agreement as
shown in Fig. 10. The parameters by Kishi—-Chen equations and by the experiment show a difference to
some degree as shown in Table 2 and Fig. 10. In spite of this difference, Kishi—-Chen equations are pre-
ferably in practical design since experimental moment-rotation curves are not available in design stages, in
general. In the analysis, the gravity load is first applied, followed by the lateral load. The lateral dis-
placements by the proposed methods and by the experiment compare well in Fig. 11. As a result, the
proposed analysis is adequate in predicting the behavior and strength of semi-rigid connections.

5.2. Column with three-dimensional degree of freedom

A simply supported column with three-dimensional degree of freedom is shown in Fig. 12. W8 x 31
column of A36 steel is used for the analysis. The column strength calculated by the proposed analysis, Euler
solution, and DRAIN-3DX based on the slenderness parameter A. are compared in Fig. 13.

The strength of the proposed analysis compares well with Euler’s theoretical solution. The maximum
error from the proposed analysis is 1.31% for the practical range of columns (4. < 2.0). However, DRAIN-
3DX produces the maximum error of 21.16%. The large error value is a result of not considering the in-
teraction of the axial force and bending moments when considering geometric nonlinear effect.

Table 2

Comparison of the three parameters of power model for verification
Parameters Curve-fitting Kishi—Chen
Initial stiffness 4,520 kN-m/rad (40,000 kip-in/rad) 3,374 kN-m/rad (29,855 kip-in/rad)
Ultimate moment 24.9 kN-m/rad (220 kip-in/rad) 20.9 kN-m/rad (185 kip-in/rad)

Shape parameter 0.91 1.65
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Fig. 11. Comparison of lateral displacements by experiment and proposed methods for verification study.
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Fig. 12. Column.

5.3. Nonlinear behavior of space rigid frame

Fig. 14 shows Orbison’s six-story space frame (Orbison, 1982). The yield strength of all members is 250
MPa (36 ksi) and Young’s modulus is 206,850 MPa (30,000 ksi). Uniform floor pressure of 4.8 kN/m? (100
psf) is converted into equivalent concentrated loads on the top of the columns. Wind loads are simulated by
point loads of 26.7 kN (6 kips) in the Y-direction at every beam-column joints.

The load-displacement results calculated by the proposed analysis compare well with those of Liew and
Tang’s (considering shear deformations) and Orbison’s (ignoring shear deformations) results (Tables 3 and
4, and Fig. 15). The ratios of load carrying capacities (calculated from the proposed analysis) over the
applied loads are 2.057 and 2.066. These values are nearly equivalent to 2.062 and 2.059 calculated by Liew
and Tang and Orbison, respectively.
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Fig. 14. Space frame of six-story.
Table 3
Result of analysis considering shear deformation
Method Proposed Liew’s
Plastic strength surface LRFD Orbison Orbison
Ultimate load factor 1.990 2.057 2.062
Displacement at A in Y-direction (mm) 208 219 250
Table 4
Result of analysis ignoring shear deformation
Method Proposed Orbison’s
Plastic strength surface LRFD Orbison Orbison
Ultimate load factor 1.997 2.066 2.059

Displacement at A in Y-direction (mm) 199 208 247
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Table 5
Parameter for connection
Initial stiffness Ultimate moment Shape parameter
63,148 kN-m/rad (557,858 k-in/rad) 107 kN-m/rad (950 kip-in/rad) 0.524
2 b |
Rigid Connection
1.6 —
2 k.
&
- 12- '
§ | Semi-Rigid Connection
=]
2 08—
=3
>y
< h .
Hinge Connection
0.4
O T l T I T I T ‘

0 10 20 30 40
Lateral Displacement at 4-th Story (mm)

Fig. 17. Load-displacement relationship.
6. Case study

Fig. 16 shows a four-story semi-rigid frame. Each story was 3.65 m (12 ft) high and 4.5 m (15 ft) wide.
The frame was subjected to concentrated gravity and lateral loads. The members were W14 x 82 for the
column and W16 x 40 the beam. The yield strength of all member was 248 MPa (36 ksi) and Young’s
modulus was 206,850 MPa (30,000 ksi). The beam connections were top- and seat-angles of L6 x
4 x9/16 x 7. All fasteners were A325 3/5-in. Diameter bolts. Three parameters computed are given in
Table 5. The load—displacement curves of semi-rigid, rigid, and hinged connection are compared in Fig. 17.
The rigid, semi-rigid, and hinged frame collapse when the applied load ratio reached 1.87, 1.45, and 0.81,
respectively. Thus, semi-rigid connection is a very crucial element to be considered in advanced analysis.

7. Conclusions

In this paper, a practical advanced analysis of three-dimensional semi-rigid frames has been developed

by combining nonlinear behavior of framed members and that of semi-rigid connection. The conclusions of
this study are as follows:

1. The proposed methods can predict accurately the combined effects of connection, geometric, and mate-
rial nonlinearities for semi-rigid frames.

2. The practical procedures for determining connection parameters are provided for a given connection
configuration.
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3. Stability functions enable only one or two element per member to capture second-order effects that make
the proposed analysis practical.

4. The CRC tangent modulus and a parabolic function consisting of member forces for gradual yielding
predict inelastic behavior reasonably well.

5. The strengths predicted by these methods are compared well those available experiments.

6. In the case study, the rigid, semi-rigid, and hinged frame collapse when the applied load ratio reached
1.87, 1.45, and 0.81, respectively. Thus, semi-rigid connection is a very crucial element to be considered
in advanced analysis.

7. The proposed analysis can be used in lieu of the costly plastic zone analysis.
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